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Abstract

This is a short ‘how-to’ summary of one method of creating cos-
mological initial conditions using the Zel’Dovich approximation.



1 Introduction

Creating a set of initial conditions for simulations of structure formation is, on
the surface, a very straightforward task. One specifies a background cosmo-
logical model, typically described as a spatially flat or open Robertson-Walker
spacetime. Following that, perturbations are imposed upon this background.

The specification of background cosmology requires several inputs: The
amount and nature of dark matter, the Hubble parameter Hy, and possibly
the amount of baryonic matter and cosmological constant in the universe.

At the epoch of baryon-photon decoupling (z ~ 1100), small-amplitude
(“linear”) fluctuations in density are already present in all of the components
of the universe (such as baryons, dark matter, photons, and neutrinos). The
statistical nature of these fluctuations depends on their origin. There are
two general classes of early universe models that are considered to provide
reasonable mechanisms for perturbations: Topological defects (Durrer et. al
2002) and inflation (Guth 1981). Inflation predicts Gaussian fluctuations
and defect models are non-Gaussian.

Gaussian fluctuations are simple since they are specified completely by a
single function, the power spectrum P(k). In Gaussian models the perturba-
tions are set down immediately (possibly in the pre-inflationary epoch) and
evolve in a straightforward manner. In real space, the probability distribu-
tion of density fluctuations is a multidimensional Gaussian, and it is very
easy to sample a Gaussian random field by sampling its Fourier components
on a Cartesian lattice, which is the technique that will be discussed in this
paper. For more information on other methods, see Bertschinger (1998).

Non-Gaussian models are much more complicated to sample. Not only do
they require more initial information than a simple power spectrum, they also
are more computational effort. Typically, topological defects induce matter
density fluctuations from the time of their creation in the early universe
to the present day, and the dynamics of their formation and evolution are
relativistic and nonlinear. For more information on creating initial conditions
of topological defects, see Bertschinger (1998) or Durrer et. al (2002).

2 Creating Gaussian Random Fields

The creation of cosmological initial conditions using a Gaussian random field
is relatively straightforward. Given a power spectrum P(k), the linear den-



sity fluctuation field is calculated at some initial time (typically z ~ 100
for high-resolution simulations). From this, dark matter particle positions
and velocities are determined, along with baryon density and velocity fields.
These steps are described further in Sections 2.1 and 2.2.

2.1 The Linear Density Fluctuation Field

The first step towards creating a gaussian density field is to specify a power
spectrum. The power spectrum of the fractional density fluctuations at the
redshift z = z., when the energy density in matter is equal to that in radia-
tion, can be related to the primordial power spectrum by P(k, ze,) = T?(k)
x P,(k), where T(k) is the matter transfer function as a function of wave
number, which describes the processing of the initial density perturbations
during the radiation dominated era (Padmanabhan 1993) and P,(k) is the
primordial matter power spectrum, which typically has a power law form, ie,
P,(k) ~ k™, where n is the index of the primordial power specturm. This
index is equal to unity for Harrison-Zel‘Dovich scale-invariant spectra, a typ-
ical model. The power spectrum at any redshift z in the matter dominated
era may then be written in the form
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where the D,’s are the linear grown factor for perturbations, which is
defined in Peebles (1980). A closed-form fitting function (much more appro-
priate for computation) is given in Eisenstein & Hu (1999). dy is a constant
describing the amplitude of density fluctuation, which can be provided from
observations of the CMB or from large scale structure, or can be normalized
by comparing to, eg, g, which is the rms amplitude of the mass fluctuations
in an the universe when smoothed using a top-hat function with character-
istic radius of 8 h™1 Mpc.

Once P(k) has been determined, we then proceed to calculate ¢, namely,
the density fluctuations in k-space. To simplify matters, we choose a three-
dimensional Cartesian grid with N grid points per dimension. Each of the
grid points has a unique (ng,n,,n,) identifier associated with its location along
the (x,y,z) axis. We sample the power spectrum P(k) discretely at each grid
location (ng,n,,n,), getting k in this manner:



k? = (n2 + n. 4+ n2)dk? (2)

where dk = 27 /Lyg, where Ly, is the size of the simulation box in mega-
parsecs. 0y is a complex value with random amplitude and phase in a gaussian
distribution with a mean of P(k). One method to calculate it is to generate a

phase angle 0, which is randomly selected in a uniform manner in the interval
[0, 27], and an amplitude A such that

A= /—log(R) * P(k) (3)
where R is randomly selected in a uniform manner in the interval (0,1).
0 1s then

6k = A@ia (4)

We then perform a Fourier transform on the grid of values of d, which
gives 0., the relative density fluctuation at each spatial grid point in the
simulation volume. The actual physical density is then

ppom(Z) = (14 02)Pom (5)
where ppas is the mean dark matter density in the simulation. The pertur-

bations in the dark matter and baryon densities are assumed to be coupled,
which is true in the linear regime, so the baryon density at any position is

mm=é%mmm (6)

where €, and 2p; are the ratios of the present-day mean baryon and
dark matter densities to the critical density of the universe.

2.2 Position and Velocity Fields

The standard approach for the dark matter is to displace equal-mass particles
from a uniform Cartesian lattice using the Zel‘Dovich (1970) approximation:

Z=q+Dt)Y() (7)
and
U= ad—lt)J: oH f D, (8)



where ¢ labels the unperturbed lattice position, D(t) is the growth factor
of the linear growing mode, and f = dinD/dlna is its logarithmic growth rate
(Peebles 1980). The irrotational (curl-free) displacement field 1 is computed
by solving the linearized continuity equation,

Oz
D(t)’

Since the equation is linearized, 'J can be found by taking the Fourier
transform of —id,k/k. See Appendix A for all equations.
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A Some useful equations

A useful fitting function for the linear growth function Dy(z) given as

Dy(z) = L 50 (2) {Qm(z)4/7 — Qa(2) + ll + %] ll + QA—(Z)] }1

1+2z 2 2 70
(10)
where
Qm(2) = Qno(l + 2)%g7%(2) (11)
and
Qa(z) = Qapg72(2) (12)
where
9(2) = Qno(T+2)> + (1 — Qo — Qu0) (1 +2)> + Qap (13)

Q0 and Q24 ¢ are the matter and vacuum energy density with respect to
the critical density, p. = 3HZ/87G, at the present epoch.
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The scale factor a(t) is calculated for any epoch by solving the Friedman
equation,

a2 k  81G A
k_8rG A 14
()+2 5 P13 (14)

which comes from the GY tensor component of Einstein’s equation. p is
actually a sum of the baryonic matter, dark matter, radiation, neutrino etc.
contributions to the energy density at the current epoch. These quantities
do not all scale the same way with a - matter scales as a~%, while radiation
scales as a~*. This equation can be rewritten as:

d 2 k 2 Q'rO QmO
(5) +?:H0<a3 + a3 +QA) (15)

a a

In general an exact solution of this can only be obtained numerically.
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